AR and its Role in Marking Space

It is perhaps surprising to realize that only two things in this world have troubled man’s ingenuity for centuries, i.e. space and time. These two are absolute benchmarks, often used when making a reference to a physcial object in space or when describing a past incident, though it is hard to understand why do we always attribute our actions or events in relation to space and time. For instance, a special event (a birthday perhaps) can be expressed in relation to time by marking that occurence on a calendar either digitally or manually. We are capable of doing this since ’time’ as we know of, is one dimensional. It is somewhat puzzling at this point, should we deal with space in the same manner, because space is three dimensional and it provides freedom for travelling in multiple directions, as opposed to the single dimensional nature of time. These implications led our curiosity to focus on one implicit feature, yet something strange about space – ”How can we mark space?”. I shall later describe the background for arriving at this notion. For the moment let us accept this question and describe its logic by an analogy with our understanding of space.

From a biological point of view, human beings tend to use physical objects for designating places of interest that often help them representing space and constructing three-dimensional cognitive maps [Egerton, 2005]. The mammalian spatial referencing patterns, as described by Egerton [2005] organise physical objects in the form of a trail, for tracing out specific points in their respective environments. Imagine you were exploring an unknown and complex environment and wanted to find your wayback after an exploration. One solution would be to mark your trail with pebbles. The pebbles would persist and you could readily trace-back your path in return, unless an ill-tempered being removes all the pebbles from your sight after you placed them. Extending this concept, imagine we could mark out any point in space, with pebbles that remain persistent over time. In such a way, we could pin-point an arbitrary location – even a point somewherein front of our eyes – freely in any perspective while tracing out complex paths in all 3 dimensions of space. Extending the idea further, if the pebbles could convey information then they could be used to pass messages or communicate information to other travelers. Further still, if pebbles could express relationships with their neighbors, complex process models could be expressed. Continue reading “AR and its Role in Marking Space”

Advertisements

Spatial Human Robot Interaction Marker Platform (SHRIMP)

ClassicMazeThrough my previous post, I highlighted the Augmented Reality’s (AR) potential to function as a novel paradigm in Human-Robot-Interactions (HRI). Marker-less AR seems more plausible for this work, as it can readily mark points in space, without demanding a prior knowledge of the environment. In other words, we can just look at any random environment and mark any point in that environment real time. By placing a virtual marker, we already saw a demonstration on how can we persistently mark space, so that virtual markers remained persistent under changing perspectives of the camera, often like as if they were real.

Now we will continue from that point onwards, and see how can we apply such an AR-based spatial marker platform into HRI. In this article we make a case study in which we assimilate Augmented Reality into robot navigation. Virtual markers are overlaid on the video feed captured by a camera which in turn is mounted on top of the robot. We mark a point in space, just by placing a virtual AR marker, so then the robot automatically navigates to the location we pointed. My hypothesis here is to prove that just by pointing somewhere in space, we could readily perform HRI tasks – especially navigation. But before moving into application specific details let us dive into some background about HRI and marking space.

Continue reading “Spatial Human Robot Interaction Marker Platform (SHRIMP)”

Remote Human-Robot Operations with Adjustable Autonomy

CuriosityThis article was based on the work carried out by [1]. In future NASA’s space missions will include more and more interactive robots. The Curiosity rover that has been recently sent to Mars was a good example for that. These kinds of robots require new remote operation mechanisms for effective use. In such a tele-operated context, a human team should constantly supervise the robot and manually perform tasks whenever needed.

An important aspect of such operations is the ability to allocate tasks between humans and robots effectively. This capability was known as Adjustable Autonomy (Adaptive Autonomy) so that the automation can be smart enough to achieve the autonomy required according to changing situations. Human-robot interactions are closely related to adjustable autonomy, and they both go side-by-side. Apparently, human robot operations are highly dependent upon the scenario so that they become specific to a given robot, thus making it hard to generalize them. Given below is a sub-set of such human robot operations. Continue reading “Remote Human-Robot Operations with Adjustable Autonomy”